An Erdos-Ko-Rado Theorem for Direct Products
نویسنده
چکیده
Let n i , k i be positive integers , i 5 1 , . . . , d , satisfying n i > 2 k i . Let X 1 , . . . , X d be pairwise disjoint sets with u X i u 5 n i . Let * be the family of those ( k 1 1 ? ? ? 1 k d )-element sets which have exactly k i elements in X i , i 5 1 , . . . , d . It is shown that if ̂ ’ * is an intersecting family then u ̂ u / u * u < max i k i / n i , and this is best possible . The proof is algebraic , although in the d 5 2 case a combinatorial argument is presented as well .
منابع مشابه
Towards a Katona Type Proof for the 2-intersecting Erdos-Ko-Rado Theorem
We study the possibility of the existence of a Katona type proof for the Erdős-Ko-Rado theorem for 2and 3-intersecting families of sets. An Erdős-Ko-Rado type theorem for 2-intersecting integer arithmetic progressions and a model theoretic argument show that such an approach works in the 2-intersecting case.
متن کاملErdos-Ko-Rado theorems for simplicial complexes
A recent framework for generalizing the Erdős-KoRado Theorem, due to Holroyd, Spencer, and Talbot, defines the Erdős-Ko-Rado property for a graph in terms of the graph’s independent sets. Since the family of all independent sets of a graph forms a simplicial complex, it is natural to further generalize the Erdős-Ko-Rado property to an arbitrary simplicial complex. An advantage of working in sim...
متن کاملErdos-Ko-Rado in Random Hypergraphs
Let 3 ≤ k < n/2. We prove the analogue of the Erdős-Ko-Rado theorem for the random k-uniform hypergraph Gk(n, p) when k < (n/2)1/3; that is, we show that with probability tending to 1 as n → ∞, the maximum size of an intersecting subfamily of Gk(n, p) is the size of a maximum trivial family. The analogue of the Erdős-Ko-Rado theorem does not hold for all p when k À n1/3. We give quite precise r...
متن کاملIntersection Properties of Subsets of Integers
Intersection properties of sets have been widely investigated by many authors. One type of theorems proved for them has the following form [9]. Let S be an n-element set and AI. ... , AN £ S, 1 £ [1, n]. Assume that IAi I1Ajl E 1 for 1,,;;;; i <j ,,;;;;N. How large can N be under this condition, depending on n and I? Thus, e.g., the de Bruijn-Erdos theorem [1] asserts that if IAi I1Ajl = 1 for ...
متن کاملTheorems of Erdos-Ko-Rado type in polar spaces
We consider Erdős-Ko-Rado sets of generators in classical finite polar spaces. These are sets of generators that all intersect non-trivially. We characterize the Erdős-Ko-Rado sets of generators of maximum size in all polar spaces, except for H(4n+ 1, q) with n ≥ 2.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 17 شماره
صفحات -
تاریخ انتشار 1996